On the relation of Bayes risk, word error, and word posteriors in ASR

نویسندگان

  • Ralf Schlüter
  • Markus Nußbaum-Thom
  • Hermann Ney
چکیده

In automatic speech recognition, we are faced with a wellknown inconsistency: Bayes decision rule is usually used to minimize sentence (word sequence) error, whereas in practice we want to minimize word error, which also is the usual evaluation measure. Recently, a number of speech recognition approaches to approximate Bayes decision rule with word error (Levenshtein/edit distance) cost were proposed. Nevertheless, experiments show that the decisions often remain the same and that the effect on the word error rate is limited, especially at low error rates. In this work, further analytic evidence for these observations is provided. A set of conditions is presented, for which Bayes decision rule with sentence and word error cost function leads to the same decisions. Furthermore, the case of word error cost is investigated and related to word posterior probabilities. The analytic results are verified experimentally on several large vocabulary speech recognition tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Bayes-Risk Decoding cons for Information Retrie

The paper addresses a new evaluation measure of automatic speech recognition (ASR) and a decoding strategy oriented for speech-based information retrieval (IR). Although word error rate (WER), which treats all words in a uniform manner, has been widely used as an evaluation measure of ASR, significance of words are different in speech understanding or IR. In this paper, we define a new ASR eval...

متن کامل

Errgrams - A Way to Improving ASR for Highly Inflected Dravidian Languages

In this paper, we present results of our experiments with ASR for a highly inflected Dravidian language, Telugu. First, we propose a new metric for evaluating ASR performance for inflectional languages (Inflectional Word Error Rate IWER) which takes into account whether the incorrectly recognized word corresponds to the same lexicon lemma or not. We also present results achieved by applying a n...

متن کامل

Automatic Estimation of Word Significance oriented for Speech-based Information Retrieval

Automatic estimation of word significance oriented for speech-based Information Retrieval (IR) is addressed. Since the significance of words differs in IR, automatic speech recognition (ASR) performance has been evaluated based on weighted word error rate (WWER), which gives a weight on errors from the viewpoint of IR, instead of word error rate (WER), which treats all words uniformly. A decodi...

متن کامل

Minimum Word Error Rate Training for Attention-based Sequence-to-Sequence Models

Sequence-to-sequence models, such as attention-based models in automatic speech recognition (ASR), are typically trained to optimize the cross-entropy criterion which corresponds to improving the loglikelihood of the data. However, system performance is usually measured in terms of word error rate (WER), not log-likelihood. Traditional ASR systems benefit from discriminative sequence training w...

متن کامل

Segmental minimum Bayes-risk ASR voting strategies

ROVER [1] and its successor voting procedures have been shown to be quite effective in reducing the recognition word error rate (WER). The success of these methods has been attributed to their minimum Bayes-risk (MBR) nature: they produce the hypothesis with the least expected word error. In this paper we develop a general procedure within the MBR framework, called segmental MBR recognition, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010